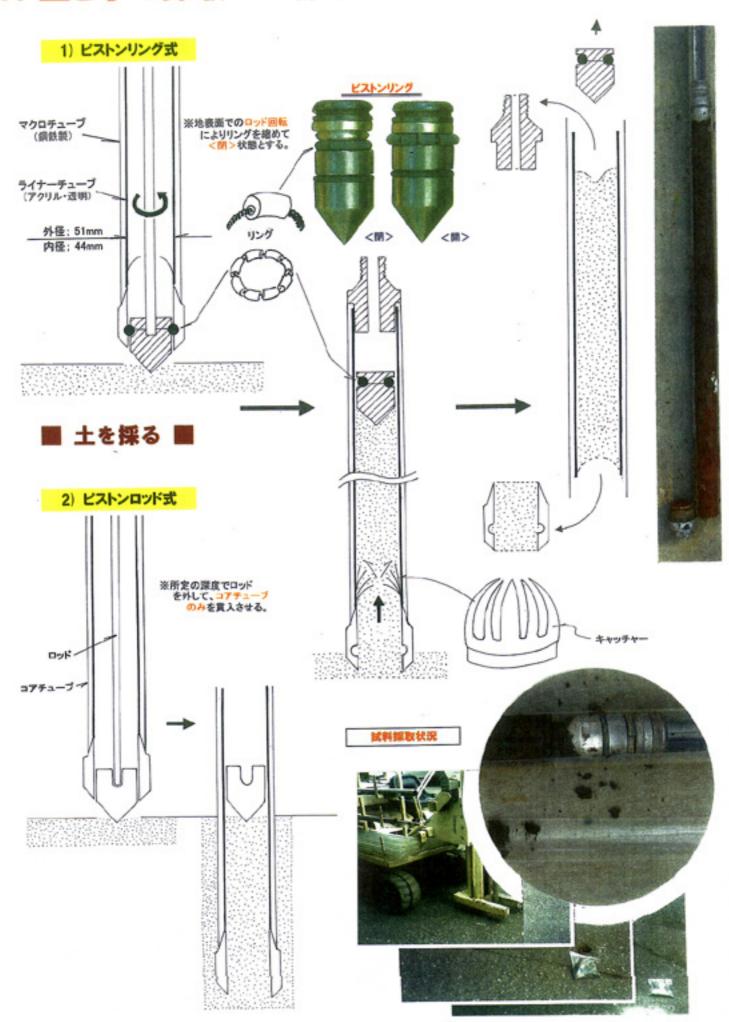
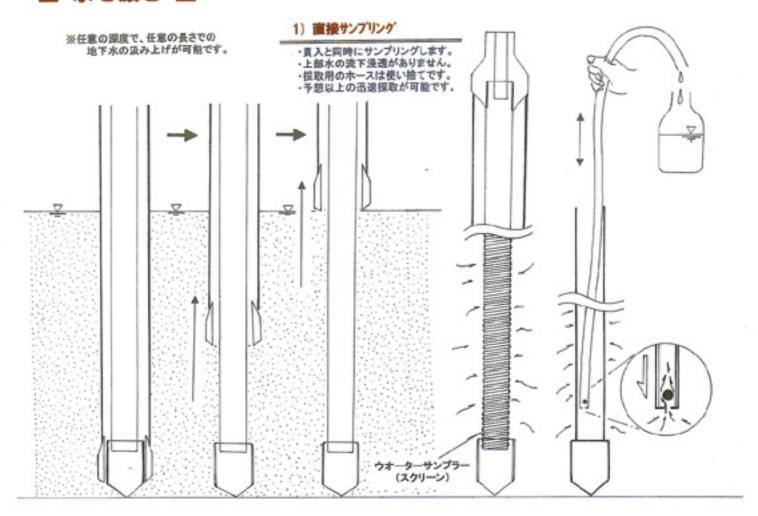
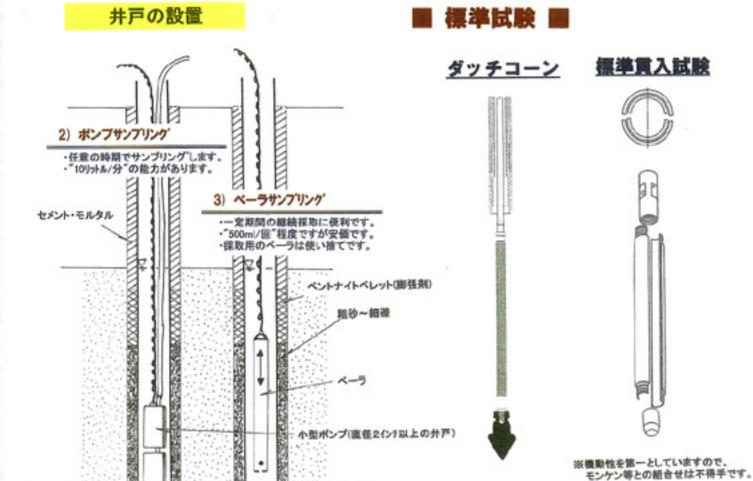
土壌・地下水の迅速採取法


Geoprobe Systems




(株) セントラル技研

1. 土と水の採取・・・・標準試験

■ 水を汲む ■

2. ジオプローブの仕様と構造

<作業手順>

試験機搬入

<サンブリング>

スペーサー・リング を付けたマクロ・コ アをピサンブル・ チューブに取出せ る。

作的マクロコア・ラ イナーをピサンプ フー・チューブの反 物の側から差し公

54DT

質入状況 (後方より)

貫入状況 (前方より)

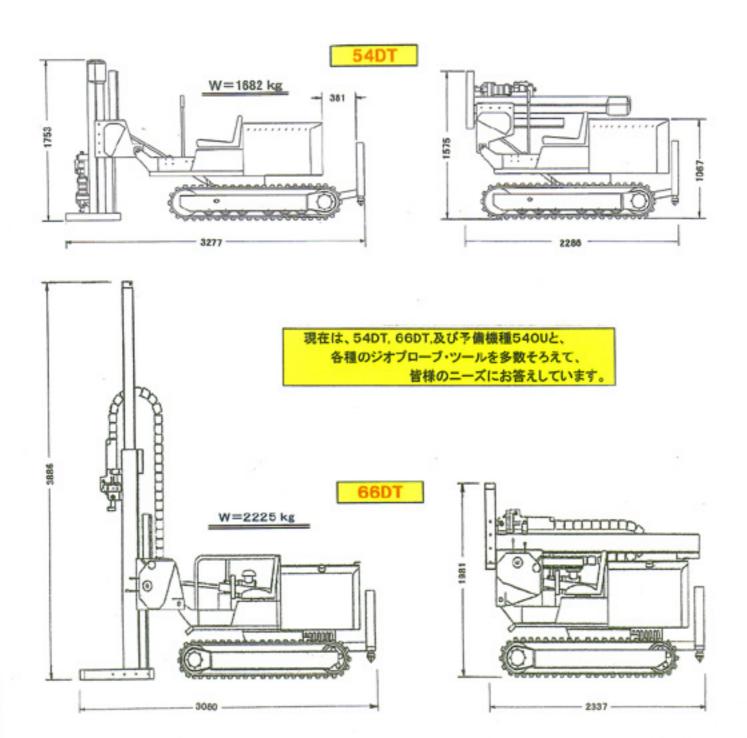
ツールをロッド・グ リップ・ブル・システ ムを使いら継ぐ。

サンプラー設置

サンプラー貫入

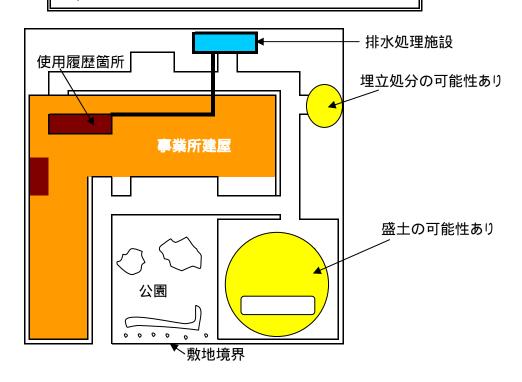
サンプラー解体

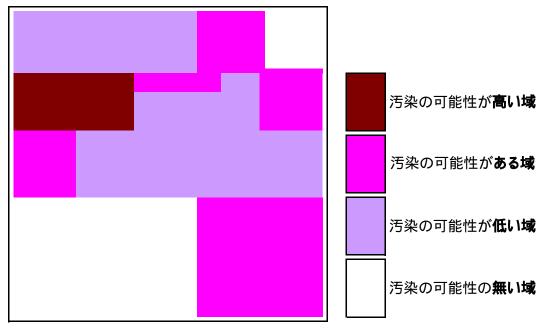
ロッドとサンプラー


採取容器と試料

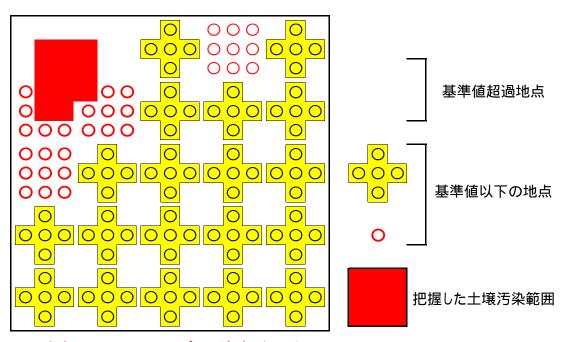
運搬移動

■ ジオプローフの仕様 ■

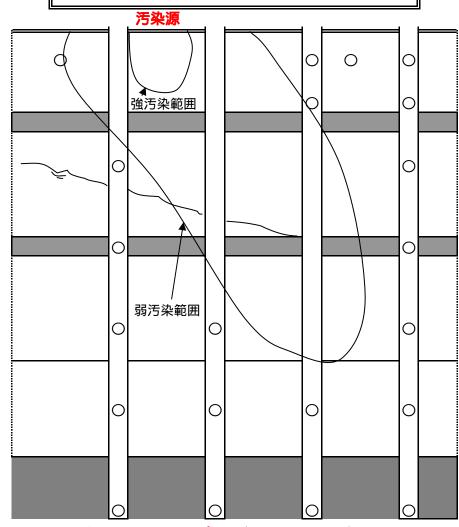

FΛ	15 B	型式				
区分	項目	540 U	54DT	66DT		
基準	① ストローク	mm	約1300	1372	1676	
	②自重	kg	1750	1682	2225	
移動	③ 全幅(折畳み時)	mm	1320	1194	1245	
	④ 長さ(折畳み時)	mm	3461	2286	2337	
	⑤ 高さ(折畳み時)	mm	1460	1575	1981	
稼動	© 全高(稼動時)	mm	(カーラ搭載型)	1753	3886	
	⑦ フット左右移動幅	mm	作業性悪い	813	813	
	® フット上下移動幅	mm	・速度遅い	991	914	
	③ フット前後移動幅	mm	・動き続い	381	381	
能力	@ 引込み力	kN	・かきばる	80	142	
	① 引抜き力	kN		111	187	
備 考			從来型	新型(現在の主流)		


3. 土壌・地下水汚染調査に最適

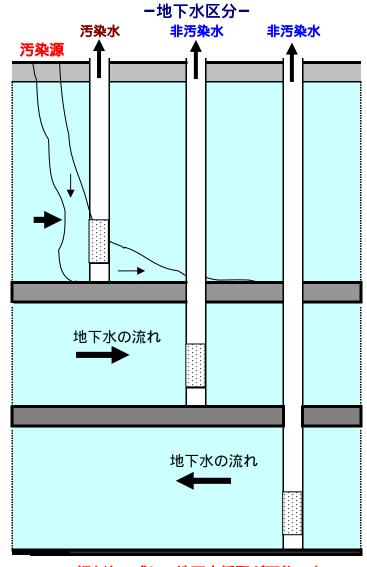
土壌・地下水汚染調査の流れ図


1) 既往資料調査での潜在的発生源の抽出

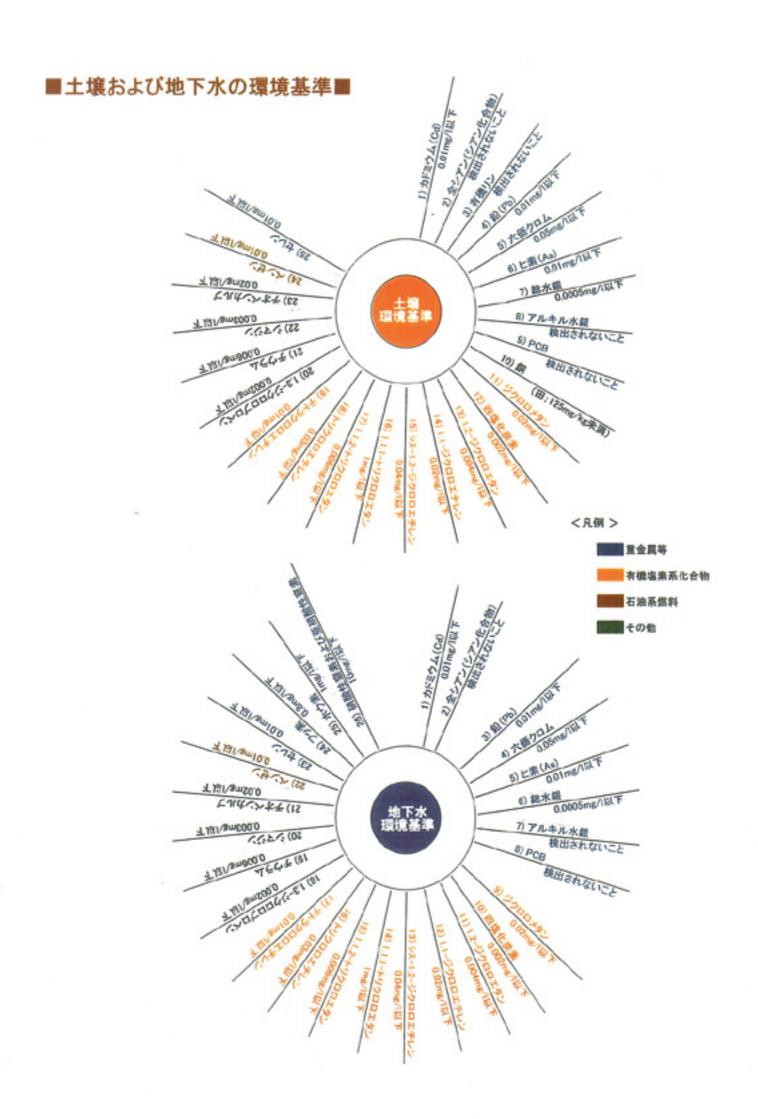
2) 既往資料調査に基づく汚染エリヤの区分



3) 概況調査での平面的な土壌汚染の範囲


全点とも0~1mのサンプリングが可能です。

4) 詳細調査での立体的な土壌汚染の範囲



任意の深度でのサンプリング(0.4, 1.0m長)が可能です。 原位置にて"PID"分析を行えば、追加等の判断ができます。

5) 地下水調査での理想的な井戸構造

打ち込み式にて地下水採取が可能です。

4.ジオプローブの性能と特色

ジオプローブの地質別の掘削能力(本/日)

対象土の種類			ジオプローブ各種(判定と本数)								
材料区分	地質名称	平均N值	掘削深度	ミュール 540U		5 4 D T		6 6 D T			
表層材料	表層	0 ~ 50	1 m		30		25		35		35
	粘性土	20	5m	0	2		4		6~7		6~7
	緩砂	30	10m		1	0	2		3~4		3~4
	中砂	40	15m	×		×			2		2~3
一般材料	密砂	50	5m	x x		×		0	3~4		
	固結シルト	80	7m	×		×		×		0	1~2
	風化岩	100	10m	×		×		×		0	1
	硬岩	300	15m	×	× ×		×		0	0.5	
礫質材料	緩い砂礫	_	20m以上	×		×		>		0	0.5
	密な砂礫		深部	×		×		>			0.2
	玉石混入		深部	×		×		>			0.1
摘要			従来の標準		現在の主流						

<判定区分>

;掘削容易 〇 ;掘削可能 ;掘削困難 × ;掘削不能

現在広く使用されている"ジオプローブ"は、自走式なので機動性に優れていることは基より、コンパクトなツールを多機種備えていることから、通常機種と比較すると、搬入ポイントへの移動,掘削準備などを効率良く行えるとともに、改良された軽量ツールも非常に扱い易くなっています。ジオプローブの最大の特徴は、打撃貫入がクローズサンプリングチューブの適用で可能となったことで、正確な深度での試料が採取できます。クローズサンプラーを使用した場合には、所定の位置で先端コーンを開放するために、スライム,孔壁の削れなどを採取する心配がありません。所定位置から1.0m掘削した区間が先端試料となりますので、コアチューブを回収して、ライナーチューブを引出すことでそのまま提出できます。通常のロータリーマシーン等オープンサンプラーでは、コアチューブからコア箱へのたたき出しのとき、試料が乱れ並べ方に個人差が生じます。掘削の途中で地質が変化したり、より深く掘削する必要が生じた場合においても、回転と打撃の併用あるいはポンプ等との組合せが可能です。

ジオプローブの各種ツールと特殊試験

ツールの種類			ジオプローブ各種(適否判定)				
工種区分	ツール区分使用区分		ミュール	5 4 0 U	5 4 D T	6 6 D T	
サンプリング	サンプリングチューブ	マクロ・コア	0	0	0	0	
		ラージボア	0	0	0	0	
	ケーシングパイプ	回転掘削			0	0	
	軟岩用コアチューブ(回転掘削)		_	-	-	0	
	硬岩用コアチューブ(回転掘削)	_	_	_	0	
	不撹乱試料採取(N值0	~40程度)	_	-	0	0	
特殊試験	標準貫入試駅	ģ	_	-	-	0	
	ダッチコーン	/	_	_	0	0	
	各種ロータリーマシー	-ンツール	_	_	_	0	
摘要			従来の標準		現在の主流		

25~150mmのケーシングパイプの挿入が可能で、一般に井戸の設置・上部水の落下防止・孔内崩壊防止に使用しています。 通常は先端コーンを取付けて打込みますが、固結度が高い場合は、ポンプ,ウオータースイベルを使用し回転掘削で行います。 井戸の設置実績; N値50以上の固結シルト,砂層で、86mmケーシングを28mまで挿入して、菅底にPVC2インチを設置しました。

株式会社 セントラル技研

本 社 :東京都八王子市元横山町1-2-13 直通電話 環境調査部

Http://plaza8.mbn.or.jp/centralgiken/

TEL. 0426-45-8276 FAX. 0426-45-8307 TEL·FAX. 0426-60-7637